Advanced Operating System

Code	Credit Hours
CS-837	3-0

Course Description

CS-837 is an introduction to operating system design principles. The topics we will cover include processes, threads, inter-process communication, scheduling, synchronization, filesystems, I/O management, virtualization, security, and distributed processing. Students are expected to be familiar with C/C++ and must be amazingly comfortable with its programming techniques. Operating systems are prevalent in many areas of technology today. An operating system is a software layer that is closest to the hardware and provides a standardized interface to the application-level software At the end of this course, students should have a very thorough understanding of how hardware and the operating system kernel can affect software design.

Text Book:

Text Book: 1. Abraham Silberschatz et al., Operating System Concepts, 10/E, Wiley, 2018

Reference 1. William Stallings, Operating Systems: Internals and Design Principles, 7/E, Prentice Hall, 2012

Books:

2. Andrew S. Tanenbaum, Modern Operating Systems, 3/E, Prentice Hall, 2012

ASSESSMENT SYSTEM FOR THEORY

Quizzes	15%
Assignments	10%
Mid Terms	30%
ESE	40%

ASSESSMENT SYSTEM FOR LAB

Quizzes	10%-15%	

N/A	

Teaching Plan

Week	Topics
01	Introduction to Operating Systems and Computer
	Architecture
02	Operating System Structures
03	Processes and Threads (POSIX, User/Kernel)
04	Threads & Concurrency
05	CPU Scheduling
06	Synchronization Tools
07	Concurrency: Mutual Exclusion and Synchronization
08	Concurrency: Deadlock and Starvation
09	MSE
10	Memory Management: Partitioning, Segmentation
	and Paging
11	Memory Management: Virtual Memory and Page
	Replacement
12	File Systems and Mass Storage Management
13	I/O Management and Disk Scheduling
14	Multiprocessor Systems and Virtualization
15	Security: Cryptography, Protection and Authentication
16	Virtual Machines
17	End Semester Exam

Practical: N/A for this Course